New GPU node available on Sherlock

There’s a new GPU node in the gpu partition!

It’s notable for a list of reasons. This is the first node on Sherlock to feature both:

  1. the latest generation of Intel CPUs (Skylake),
  2. the latest generation of computing-optimized NVIDIA GPUs,

and it’s also the first node on Sherlock with 32GB GPUs, which is particularly interesting for a lot of Deep-Learning oriented workloads.

Specs

This compute node features:

Details

Nodes in the gpu partition are now available to everyone on Sherlock, and the new node can be requested by adding the following flag to your job submission options: -C "GPU_SKU:V100_SXM2&GPU_MEM:32GB"

To request an interactive session on a Tesla V100 GPU with 32GB of memory, you can run:

$ srun -p gpu --gres gpu:1 -C "GPU_SKU:V100_SXM2&GPU_MEM:32GB" --pty bash

To see the list of all the available GPU features and characteristics that can be requested in the gpu partition:

$ sh_node_feat -p gpu | grep GPU GPU_BRD:GEFORCE GPU_BRD:TESLA GPU_CC:3.5 GPU_CC:3.7 GPU_CC:5.2 GPU_CC:6.0 GPU_CC:6.1 GPU_CC:7.0 GPU_GEN:KPL GPU_GEN:MXW GPU_GEN:PSC GPU_GEN:VLT GPU_MEM:12GB GPU_MEM:16GB GPU_MEM:24GB GPU_MEM:32GB GPU_MEM:6GB GPU_SKU:K20X GPU_SKU:K80 GPU_SKU:P100_PCIE GPU_SKU:P100_SXM2 GPU_SKU:P40 GPU_SKU:TITAN_BLACK GPU_SKU:TITAN_X GPU_SKU:TITAN_Xp GPU_SKU:V100_SXM2 

For more details about GPUs on Sherlock, see the GPU user guide.

If you have any question, feel free to send us a note at srcc-support@stanford.edu.